2015中考压轴题_动态几何之线面动形成的全等

初中数学试卷

数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;

直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等。本专题原创编写动点形成的全等、相似三角形存在性问题模拟题。

在中考压轴题中,线面动形成的全等、相似三角形存在性问题的重点和难点在于应用数形结合的思想准确地进行分类。

一. 线动形成的全等三角形存在性问题

原创模拟预测题1. 如图,在平面直角坐标系xOy中,抛物线y x2 2x 4交y轴于点C,对称轴与x轴交于点D,顶点为M,设点P(x,y)是第一象限内该抛物线上的一个动点,直线PE绕点P旋转,与y轴交于点E,是否存在以O、P、E为顶点的三角形与△OPD全等?若存在,请求出点E的坐标;若不存在,请说明理由。

2015中考压轴题_动态几何之线面动形成的全等

1

2

【答案】解:∵抛物线y x2 2x 4交y轴于点C, ∴C(0,4)。

1

2

2015中考压轴题_动态几何之线面动形成的全等相关文档

最新文档

返回顶部