《创新设计》2017届高考数学(文)二轮复习(江苏专用)教师word文档 专题七数学思想方法答案

《创新设计》2017届高考数学(文)二轮复习(江苏专用)教师word文档 专题七数学思想方法

《创新设计》2017届高考数学(文)二轮复习(江苏专用)教师word文档 专题七数学思想方法答案

第1讲函数与方程思想、数形结合思想

高考定位函数与方程的思想一般通过函数与导数、三角函数、数列、解析几何等知识进行考查;数形结合思想一般在填空题中考查.

《创新设计》2017届高考数学(文)二轮复习(江苏专用)教师word文档 专题七数学思想方法答案

1.函数与方程思想的含义

(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.

(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法.

2.函数与方程的思想在解题中的应用

(1)函数与不等式的相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x) >0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.

(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.

(3)解析几何中的许多问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论.

3.数形结合是一种数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:①借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图象来直观地说明函数的性质;②借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.

4.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其

《创新设计》2017届高考数学(文)二轮复习(江苏专用)教师word文档 专题七数学思想方法相关文档

最新文档

返回顶部